## Microscopie photonique

préparation et observation métallographiques

Jean-Michel LAGO
Photonsud

150 ans de Métallographie à toutes les échelles 21 mars 2014 Maison des mines 270 rue St Jacques 75005 Paris

#### **Auertissements**

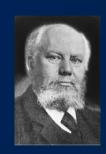
- ✓ Noms ou marques citées:

  aucun intérêt commercial ou publicitaire.
- ✓ Plusieurs segments dans le marché de la microscopie.
  On ne considèrera que la Recherche.

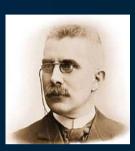
#### ler constat: la production optique au XIXème

- La microscopie très développée dans la vieille Europe,
- Toute la production est "artisanale", sans norme,
- De nombreux fabricants en France, Angleterre et Allemagne, certains avec un avenir industriel.

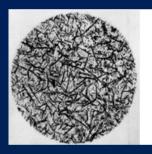
| en France                                    | en Angleterre                        | en Allemagne                             | en Autriche                            |
|----------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------|
| 1831 Chevalier<br>1839 Nachet<br>1883 Pellin | 1847 Smith & Beck<br>Power & Lealand | 1846 Zeiss<br>1849 Kellner<br>1869 Leitz | 1876 Reichert                          |
|                                              |                                      | aux USA<br>1853 Bausch & Lomb            | au Japon<br>1917 Nikon<br>1920 Olympus |


- date à retenir
  - 1873 Ernst Abbe explicite la formation de l'image dans un microscope et fixe les limites de la résolution d'un système optique.




## Zème constat: l'iconographie



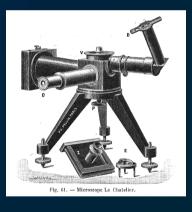

Sorby (1826-1908)



Martens (1850-1914)



Le Chatelier (1850-1936)






Optical micrographs of etched cast iron and iron armour



**1899:** systeme basé sur le design de Martens



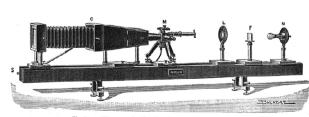
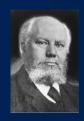
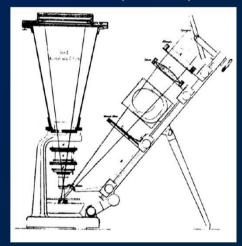



Fig. 61. — Microscope Le Chatelier disposé pour la microphotographic


## 3<sup>ème</sup> constat: l'éclairage

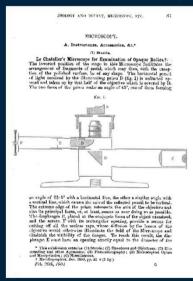



Sorby (1826-1908)



Miroir concave de Lieberkhün



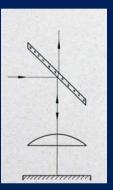

Martens (1850-1914)

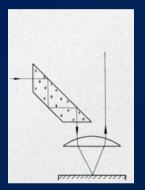


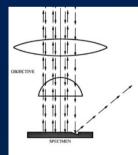
En 1880 il décrit son microscope avec éclairage oblique et dispositif photographique,



Le Chatelier (1850-1936)

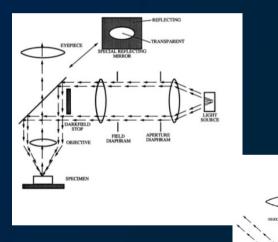




Article de 1901 dans lequel il décrit le montage, notamment le dispositif d'éclairage


• 1893 August Köhler invente le système d'éclairage à double conjugaison, avec diaph de champ et d'ouverture séparés.

#### Evolution du microscope

- Les techniques de microscopie vont se développer
- L'observation ne se fait qu'en "fond clair"



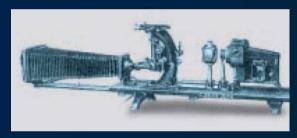







 En 1903 Zsigmondy et Siedentopf inventent le "fond noir" (Prix Nobel Chimie 1925)

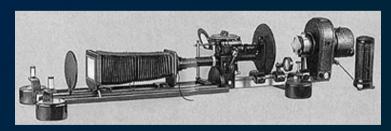





#### Evolution du microscope

- Tous les constructeurs adoptent le principe "Le Chatelier".
- Qualité du traitement des surfaces
- Performance des objectifs

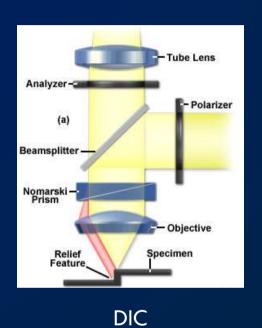


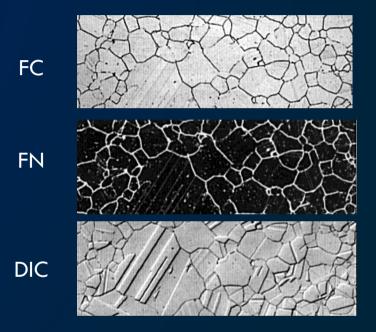

Microscope Métallographique Reichert 1920



Microscope Métallographique Zeiss/Le Chatelier 1924 Première optique corrigée à l'infini




PMC Olympus 1925




Neophot Zeiss 1934 Premier fond noir et éclairage de Köhler

#### En 1956







#### La qualité de l'échantillon reste l'élément fondamental.

Les techniques de préparation commencent à évoluer à partir de l'après-guerre,

Brevets pour polissage diamanté et machine de pré polissage papier SiC

#### **REICHERT**



1920



MeF 1930



1964



MeF2



MeF4



MeF3 1987



1986 : Reichert repris par Cambridge

1990 : Wild+Leitz et Cambridge s'unissent → Leica

## Pendant ce temps ...



Zeiss Est





Zeiss Ouest 1976





Nachet 1935



Nachet 1950



PMF Olympus 1954



PMG Olympus 1964



PME Olympus 1967

## Les 4 Grands fournisseurs aujourd'hui



Leica



Olympus



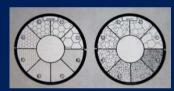
Nikon



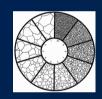
Zeiss

#### Et la préparation

- La préparation de l'échantillon reste un point crucial
  - Procédures de préparation garantissant la structure vraie
  - Reproductibilité la plus élevée possible
  - Procédures efficaces et économiques
  - Temps de préparation le plus court possible
  - Recherche d'un niveau élevé d'automatisation
    - Quelques étapes importantes (STRUERS)
      - 1919 : Struers qui a obtenu la représentation danoise de Reichert se lance dans la préparation métallographique
      - 1944 : Instrument pour le polissage électrolytique
      - 1956 : Brevets pour polissage diamanté et machine de prépolissage papier SiC
      - 1963 : Mise en place d'une stratégie industrielle de développement des outils pour la préparation matérialographique
      - 1973 : Premières machines de préparation semi-automatique
      - 1985 : Pré-polissage et polissage entièrement automatiques

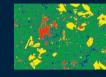

Réf: La microstructure vraie des matériaux. Préparation matérialographique de Sorby à nos jours. Kay Geels, Struers A/S, Copenhague, Danemark

## 60's, La métallographie devient quantitative

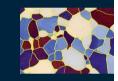

Paramètres quantifiables: phases, grains, inclusions

#### Première étape

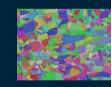
- Oculaires intégrateurs (Hennig/Zeiss 1958)
- Méthode d'évaluation visuelle, ex selon norme ASTM E112 (1961)




Disques de projection ASTM E 19-46 Grosseur de grains ferrite




Austenitic grain size reticle






Analyse de phases



Analyse de grains



Orientation des grains

#### Deuxième étape

Travail sur les photos

#### Troisième étape

- Analyseurs d'images, interactifs puis automatiques, avec des prérequis sur :
  - Qualité de l'éclairage (homogénéité) / Qualité du focus, stabilité,
  - Résolution optique (va définir la limite d'information pertinente)



NMI

#### 60's, La métallographie devient quantitative

- Au niveau du détecteur, évolution analogique-numérique avec des prérequis sur :
  - La résolution (taille du capteur, l'échantillonnage correct (exploitation de la résolution optique, Théorème de Shannon / Nyquist)
  - la dynamique (nombre de niveaux de gris)





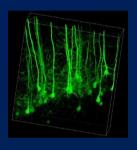


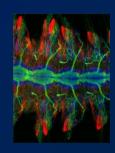






Les logiciels Tous travaillent selon le schéma :


Acquisition  $\rightarrow$  seuillage  $\rightarrow$  segmentation  $\rightarrow$  identification  $\rightarrow$  comptage (analyse)  $\rightarrow$  édition




- Analyseurs automatiques
  - Ce que l'on croit être un avantage peut éventuellement devenir dangereux.
    - l'analyseur automatique implique la parfaite reproductibilité au niveau des conditions d'observation (éclairage, diaphragmes...)
    - Parfaite reproductibilité au niveau de la préparation de l'échantillon

#### 80's différenciation vie-matériaux

- La fluorescence devient la méthode de choix pour les développements de la microscopie en science de la vie
  - Intérêt: spécificité, multi-couleurs, sensibilité, dynamique,





- Contrainte: travailler au plus bas niveau d'énergie
- Conséquences pour le développement de l'optique: optimisation de la transmission, sensibilité de la détection ... Chaque photon compte!
- Les sciences des matériaux utilisent toujours les mêmes méthodes d'observation
  - Observation en lumière blanche (laser) et réflexion
  - Techniques classiques de fond clair, fond noir DIC et pol, occasionnellement la fluorescence.

#### Dernières avancées avant que ....

- Evolution des microscopes: Intégration des motorisations
  - De la platine pour étude grand champ (mosaïque),
  - Du mouvement z pour l'autofocus et le sectionning
  - Des diaphragmes pour la reproductibilité de l'éclairage et contraste, des réflecteurs pour les techniques de contraste
- Développement exponentiel de l'informatique. Pilotage des systèmes, et de l'imagerie,

#### ... le rêve ne devienne réalité

#### La physique:

On ne peut pas avoir simultanément haute résolution et profondeur de champ,

#### La solution:

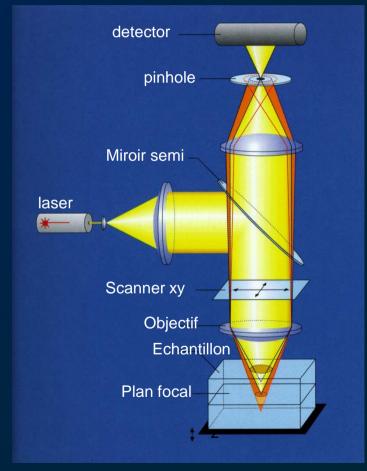
Alors on choisit haute résolution et faible profondeur de champ + tomographie

#### **OPTICAL SECTIONING**

- ✓ L'Optical Sectioning ne représente rien en 1980
- ✓ Aujourd'hui, "il pèse" plus de 50 % du marché mondial de la microscopie (> 3 Milliards de \$)

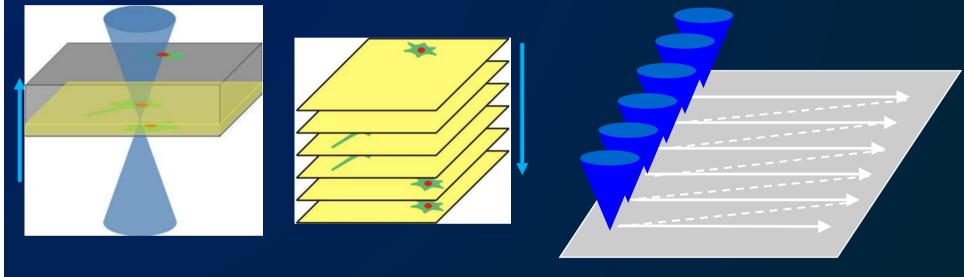


#### La microscopie confocale: 3D = états de surface




- 1957 Brevet de Marvin Minsky
- 1982 Premiers appareils industriels

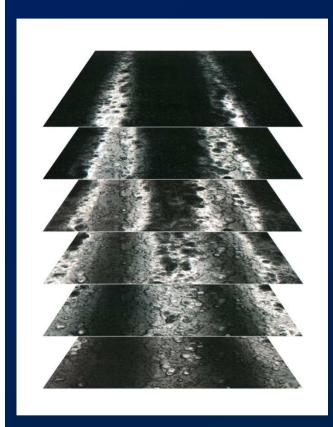
Résolution latérale: ~ 200 nm Résolution axiale: ~ 500 nm Discrimination axiale: ~ 10 nm


Il existe d'autres technologies basées sur un disque de Nipkow, ou qui exploitent le chromatisme ou l'astigmatisme, avec des détecteurs type camera Vidéo.

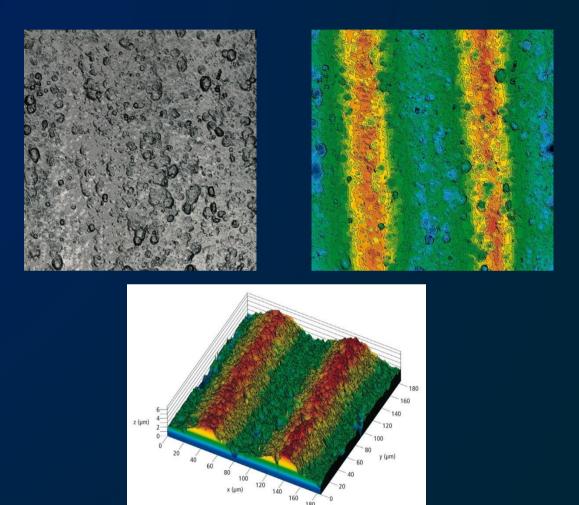
La finalité reste la même: à partir de sectionning optique (sans contact), avoir accès à des informations 3D,



Technologie du "point scanner"

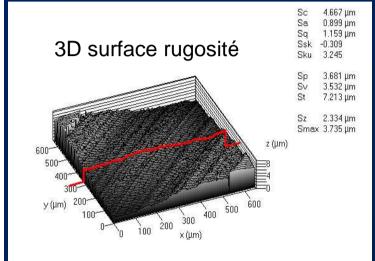

## La microscopie confocale

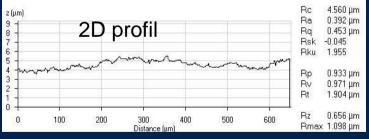


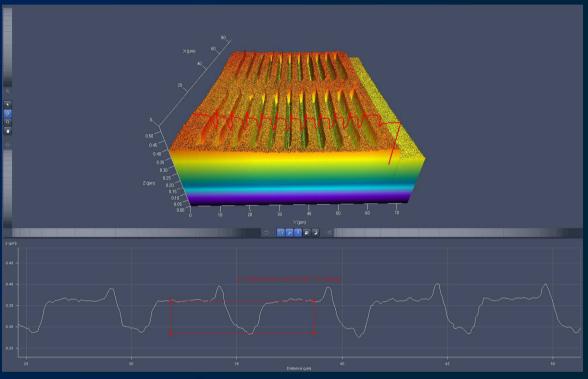

Balayage XY

- ✓ "Sectionning" optique de l'échantillon sans contact physique.
- ✓ Information collectée provenant d'un plan
- Reconstruction tridimensionnelle des sections acquises
- ✓ Mesure en trois dimensions.

## Analyse d'états de surface





Z stack acquis




Différents modes de projection et visualisation

## Analyse d'états de surface

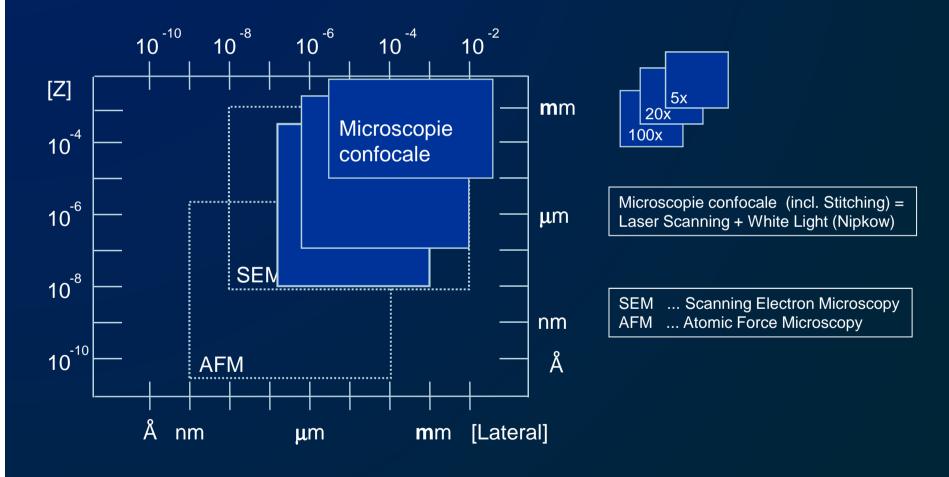






Test Sample: Etched height step: 85 nm

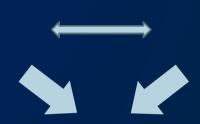
Lens: 50x/0.95 Laser: 543 nm


Slices: 53

Pixels: 1168 x 101

Certified height: 85 nm
Measured height: 0.08 µm
Difference: 5 nm

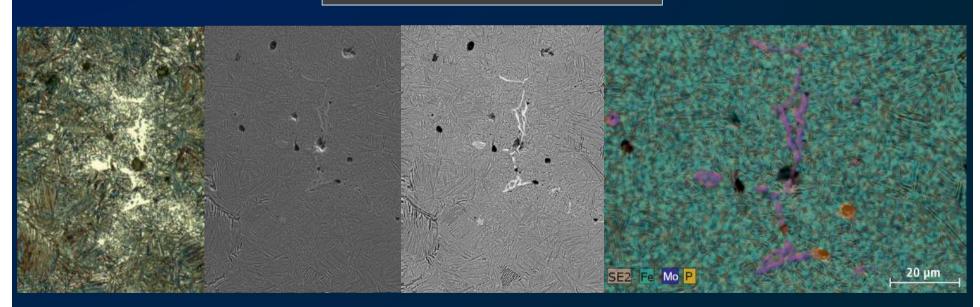
## Si on compare


Schématique comparaison des champs et des résolutions:



# De nouvelles passerelles entre les mondes micro et nanoscopiques

#### L'information à différentes échelles


Choisir une région d'intérêt en LM et la retrouver facilement et rapidement en haute résolution en EM. (ou AFM)



#### Imagerie multimodale

La ME pour étendre les techniques de contraste de LM aux méthodes d'étude morphologique et analytique.

#### Microscopie Corrélative



Austempered ductile iron (ADI) Institute of Materials and process engineering, ZHAW, Winterthur, Suisse. 1: LM 2: SE 3: BSE 4: EDS

#### Remerciements

Emmanuel Humbert



Brigitte Duclos



Mickael Morgant



## Merci de votre attention